

Recent Developments in Net Energy Research for Pigs

Jean NOBLET

INRA, UMR SENAH, Saint-Gilles, France

Jean. Noblet@rennes.inra.fr

ASAS 2008

Energy systems

Introduction (1)

- >Cost of feed > 50-60% of cost of pig meat production
- >Energy is the main feed cost
- >More and more ingredients are available + competition between animal species, with biofuels, with humans, etc.
- > Feed composition has an obvious impact on animals performance and economical results
- >Pigs (genetics, sex, BW, health, ...), environmental conditions (T, ...) and production objectives are variable
- >New challenges and constraints (> pollution, ...)

ASAS 2008

Energy systems

Introduction

Introduction (2)

- Nutritional values: precise hierarchy ⇒ New concepts?
- ➤ Recommendations : variable ⇒ Factorial approach+ modeling
- > Coherence of nutritional values and nutrient requirements
- > Precise animal requirements and feed nutritional values are necessary

What new on (net) energy for swine?

ASAS 2008

Energy systems

Introduction

Methods for evaluating energy in pig feeds

ASAS 2008

Energy systems

INPA Effect of	of BW on	dE (2)	
BW, kg	45	100	150
Mean (7 diets)	83.2	85.5	86.3
Starch rich diet	90.6	91.6	92.0
Fiber rich diet	71.6	75.6	78.0
Effect of BW characteristic		t on feed	
ASAS 2008 Energ	gy systems	Noblet an	d Shi, 1993

Stage	Growing	Adult
BW, kg	61	234
DM intake, g/d	1854	2104
dE, %	82.1	85.2

Trial (n diets)	1 (1	.4)	2 (7	77)
Stage	Growing	Adult	Growing	Adult
BW, kg	43	208	61	234
DM intake, g/d	1373	1485	1854	2104
dE, %	75.8	84.7	82.1	85.2

INPA Effect of	technology	on c	::- ::-
Technology	Mash		Pellet
Wheat-SBM diets (n	=2) 88.6	*	89.2
Corn-SBM diets (n=3	88.4	**	90.3
Corn (n=5)	87	**	90
Full-fat rapeseed	35	**	83
Linseed (extrusion)	51	**	84
Technology affect in energy evaluation			
ASAS 2008 Energ	gy systems		INRA data

Minerals, %*	1.0	4.0	7.0
Ash, % DM	4.6	7.2	9.8
dN, %	85.4	82.4	81.7
dE, %	85.5	83.2	82.4
* Calcium carbonate	+ dicalcium pho	sphate	

Urinary and gas energy

- · In the growing pig:
 - >E urines, MJ/kg DM=0.19+0.031×N urines (g/kg DM)

(N urines = 50% digestible N)

- >E methane # 0.4% of DE (related to fermented energy)
- · In the adult pig:
 - >E methane # 2-3 times higher than in growing pigs

Urinary energy should be calculated; methane energy is estimated (or neglected in young pigs)

ASAS 2008

Energy systems

Le Goff and Noblet, 2001; Noblet et al., 2004

INPA

Methodological aspects of DE and ME measurements

- > dE is affected by
 - BW
 - Technology
 - Ash
 - Gut health
 - Etc.

- → Conditions should be standardized
- > Methods: total collection, markers, in vitro, NIR, prediction equations, etc.
- > ME can be estimated from DE values

ASAS 2008

Energy systems

Methodological aspects of NE measurements

- · NE is related to FHP values and amount and composition of energy gain → genotype, BW, sex, feeding level, diet balance (AAs), environment conditions, behavior, etc. have to be standardized for measuring NE values
- · NE values measured or calculated under different conditions are not comparable
- · Validation of a NE system is necessary
- INRA system: 45 kg boars; indirect calorimetry; FHP = 750 kJ/kg BW^{0.60}; n=61 diets; evaluated in heavier pigs and adult sows

ASAS 2008

Energy systems

Energy evaluation of pig feeds

ASAS 2008

Energy systems

	y of energy adult pi		
	Growing	Adult	∆,%dEg
Wheat	87.6	89.2	+1.8
Corn	87.9	91.4	+4.0
Soybean meal	85.2	90.4	+6.2
Wheat bran	56.7	62.7	+10.4
Corn gluten feed	65.6	76.4	+16.5
Soybean hulls	51.4	70.3	+36.8

Metabolic utilization of energy

>k_g , % = 74.7 + 0.009 × Starch + 0.036 × EE - 0.023 × CP - 0.026 × ADF

- In "40 kg" growing boars, 130 g daily protein gain, 2.2 x MEm, 22°C, 61 diets
- Chemical composition: g/kg DM
- > The coefficients of the equation are not affected by pig BW (Protein:Fat) and physiological stage (maintenance vs growth)

The same NE system/equation can be used at all stages of pig production

ASAS 2008

Energy systems

Noblet et al., 1994

Efficiencies of utilization of ME of nutrients (k_q, %)

Crude protein 58
Crude fat 90
Starch 82
Dietary fiber 58

- Comparable (relatively) in the growing pig and in the adult sow (at maintenance)
- > No effect of BW/composition of BW gain on efficiencies
- Values confirmed in recent trials and with different methodologies

ASAS 2008

Energy systems

Noblet et al., 1993; 1994

```
INRA
      Estimation of NE content (MJ/kg DM)
       NE2 = 0.0121 DCP + 0.0350 DEE + 0.0143 Starch
                     + 0.0119 Sugars + 0.0086 DRes
                                                    (RSD = 0.25)
      NE4 = 0.703 DE + 0.0066 EE + 0.0020 Starch
- 0.0041 CP - 0.0041 CF
                                                (RSD = 0.18)
       NE7 = 0.730 ME + 0.0055 EE + 0.0015 Starch
                     - 0.0026 CP - 0.0041 CF
                                                (RSD = 0.17)
               - can be used at all stages of pig production
 Equations
               - applicable to compound feeds and ingredients
               - have been validated
                       Energy systems
                                                   Noblet et al., 1994
ASAS 2008
```


	Diet 1	Diet 2	Diet 3
CP, %	11.7	22.6	23.1
Lysine, g/d	10.2	11.0	27.3
N gain, g/d	19.8	19.6	30.0
Heat production*	1.33°	1.42b	1.42b
Retained Energy*	1.23ª	1.13 ^b	1.13 ^b
*MJ/kg ^{0.60} ; adjusted for th	ne same ME intak	re	

Su	pply (in g	rowing pi	gs; % of sta	arch)
	Starch	Fat	Crude protein	Dietary fiber
Gross energy	100	221	129	106
DE	100	174	123	3
WE	100	177	109	3
NE	100	195	80	-6

to energ	y evaluation :	syst	em (1)
CP, %	19.0		14.6
Amino acids	+		+++
Energy intakes, M	J/d*		
DE	38.9ª	>>	37.3 ^b
ME	37.1°	>	36.1 ^b
NE	27.6	=	27.5
*Energy intakes 30-1	100 kg and adjusted	for th	e same BW ga

Performance of to energy e				
Fat addition, %	0	2	4	6
Feed : gain*				
MJ ME/kg	100	100	99	98
MJ NE/kg	100	100	100	100
*Adjusted for the same	e feeding	level		

INPA

NE requirements

- \succ Most energy requirements have been established on DE or ME bases with cereals based diets (k_g # 75%)
- >No interaction between stage of growth or feeding level and diet composition on k_g \rightarrow The same equations can be used at all stages
- >NE requirements can be expressed as NE for growth at all stages

→NE = $0.75 \times ME$ or $0.72 \times DE$

ASAS 2008

Energy systems

Conclusions (1)

- Energy value (Ed mainly) is dependent on methods/conditions used for its determination
- > At least two energy values should be used for pig feeds: piglet + growing + finishing vs adult pig
- > Hierarchy between feeds and least cost formulation results depend on energy system
- > The importance of a "reliable" energy system is emphasized when more non conventional ingredients (co-products, etc.) are available

ASAS 2008

Energy systems

Conclusions (2)

- > NE system is better for a satisfactory estimate of "true" energy value of feeds and pigs performance
- Energy value of feeds for pigs is highly dependent on digestibility → Improvement of knowledge
- > Effects of technology, enzymes,?
- > An accurate protein evaluation system is also necessary: "standardized" ileal digestible amino acids

ASAS 2008

Energy systems

Future?

- > To implement available knowledge!
- > To be careful in using (digestibility) methods!
- > To improve knowledge and technologies on utilization of dietary fiber
- > Multi-formulation: feeds vs all animal species
- > Resources are limited/demand: To improve the output(meat):input (feed, energy, C, etc.) ratio in connection with social demand
- > ???????

ASAS 2008

Energy systems

